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Abstract-A 2D full-wave TLM (transmission-

line-matrix) technique was reported before for

the analysis. of arbitrarily shaped guided wave

structures. However, the computations involve
the operations on the third spatial step Az. In this

paper, another 2D full-wave TLM-based method

is presented where no third spatial dimension

operations are required at all. The method is

derived by assuming the field variation of e-~~”

along the z-direction (the propagation direction)

in the 3D TLM based finite-difference time-
domain (FD-TD) method. As a result, a truly

two-dimensional scheme is developed with both

electric and magnetic components condensed at

every numerical grid point. The method was

applied to a microstrip line deposited on an

anisotropic substrate and a multiple quantum
well (MQW) structure where the dielectric

constant of the MQW substrate varies with

spatial positions. The numerical results agree
well with the results obtained from other

techniques, and therefore validate the

effectiveness of the 2D technique based on the

TLM principle.

L INTRODUCTION

Two widely employed time-domain

techniques for modelling electromagnetic

structures are the’ finite-difference time-domain
(FD-TD) method and the transmission-line:

matrix (TLM) method proposed. To exploit the

features of both FD-TD and TLM, an FD-TD
formulation based on the TLM scheme was

proposed in [3] for a uniform mesh, and a further

demonstration in a more general case was shown

in [2]. The progress in implementation of various

modelling schemes in this TLM based technique,

such as the Perfectly Matched Layer (PML) and
nonlinearity, were presented in [3].

To improve the computation efficiency for

the analysis of guided wave structures, a full-

wave two-dimensional TLM scheme was

developed in [4]. In the method, e–-@‘Z is

introduced to account for the wave propagation

along the z-direction. The resultant formulations

are dependent on Az. A further improved

technique which removes any involvement of Az

was made but was demonstrated only on the

Yee’s FD-TD grid [5] [6] [’7]. On the other hand,

to the authors’ best knowledge, this improved 2D

technique has not been applied to the TLM based

method. The reason is probably that the TLNl

scheme is formulated in terms of impulse

scattering at nodes (which are connected by a
network of transmission lines) rather than an

explicit expression of Maxwell’s equations.

In this paper, we report the successful

adaption of the improved 2D full-wave scheme

to the TLM based technique in the form of TLM

based FD-TD formulation, leading to another

full-wave 2D TLM-based method.

II. THE FULL-WAVE 2D TLM BASED FD-
TD FORMULATIONS

The full-wave 2D TLM based FD-TD

technique is derived from the 3D TLM based
FD-TD formulations. Therefore, we start with the

3D TLM based FD-TD formulations.
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A. The 3D TLM-Based FD-TD Formulas

In a 3D TLM-based FD-TD cell with

dimensions 6X x dy x 6Z ( = u Al x vA1 x wA1) ,

all six field components of E, El and their

corresponding flux densities, D and B, are

defined at the center, while at the grid points on

the boundary surfaces of the cell, only the field

components tangential to the surfaces are
considered [3] [2].

By simply finite-differencing Maxwell’s

equations with respect to the center of a 3D cell,

finite difference formulations can be easily

obtained for the field components at the center of

a 3D cell. For example, for the D. component,

we obtain:

.

[y ‘D~:;J’ ‘) + g. uJq(i j, ~)1

Vw UD;-l (z, j, k)=— – g. UE;-l (z, j, k)
u

– *[vzo;:-$(z,j, /%++) – vzoH;y,j,k – !Jl
1

1 k)]+:[wZOH:-3(i,j+ ~,k) — w& H;-i(i, j — j,

Ai/c
stability factor S= ~.

The E and H field components at the center

of a cell are found through a solution of the

medium constitutive relationship: D=D(E,H) and

B=B(E,H).
The field components at the boundary

surfaces of the cell can be updated through a
special averaging process in both space and time.

For instance, we have:

u@+;(i, j, k+;)

= – 0.5[uE;-: (i,j,k-~)+qzv vZ.H;-i (ij,+)]

– o.5[uE:-;(i,j,k+;) – qzv vZ.H;-%>j,k+;)l

+[uE;(ijk)+qxv vz.H;(i,j,k)l+[uE; (i,j,k+l)

– %J ~.z~}(i’m+~)] (2)

Here 20 =
[

k
,0. qxv is a constant which

determines the type of the TLM node to which

the proposed FD-TD is equivalent. For instance,

selecting q%v=1 will make the TLM based FD-

TD equivalent to the TLM Symmetrical

Condensed Node while using q.g = & will

make the FD-TD equivalent to the TLM Hybrid

Symmetrical Condensed Node.

B. The 2D Full-Wave Ti5M-Based FD-TD
Formulas

By applying the similar procedure as

described in [7], we assume that

[~., q/, ~zl =

l~z(~, 9), ~Y(~, y), ~.(x, y)lje-~p’ (3)
[~., q> ~z’1 =

[~x(~, Y), ~J~, v), ~z(x, g)] e-~p’ (4)

[E., Ev> Hz] =

[J%(z, v), ~Jz, Y), HAz, Y)lj e-~~z (5)
[~., ~~> ~zl =

[IL(x, Y), Hv($, Y), G(q y)] e-~~z (Q

(1) and (2) then become:

[y “D:;’ ~) + g. Wq(i, j)] =
VWZ@:”’(z,j)—
u – gzuE:-l (i,j)

– /3c :t vZ.H;-;(i, j)

+:[w.ZoH;-i(i, j+;) – w.ZoH;-i(i, j – ;)] (7)

uE:+;(i, j) = 2 uE:(i,j) – uE&+i,j) (8)

The third dimension discretization & is now

completely removed and the index k disappears.

The equations for the other components can be

obtained in a similar way.
Fig. 1 shows the grid arrangement for the 2D

TLM based FD-TD scheme. As expected, all of

the field components are defined at the center of

a 2D cell while on the boundary surfaces, only

the tangential field components are defined. This
is different from the grid arrangement based on
the Yee’s grid as shown in [7].
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Fig.1 Grid arrangement of the 2D TLM based

FD-TD method

111.NUMERICAL RESULTS

Two examples were computed. One is the

open microstrip line deposited on an electrically

and magnetically anisotropic substrate [8] and

the second one is the InGaAs/GaAs MQW field-

induced optical waveguide as described in [9].

In the first example, the geometry and

parameters of the rnicrostrip line were taken to be

the same as those used in [8] with

811 = EZICOS26’ + 6Z15in29, e33 = t7mIsin29 + EZI CO$ 0,

E22 = &yl, je13 = – j631 = (6.1 – &ml) sinOcosO,

m = Pz2cos2(@+4 + ~z2si~2(~+A99

P33 = k2sin2@+A~) + W2COS2(B+A0, KM = rKY2J ~~

jP13 = – jh31 = (v.2 – %7.) si@O+A@)cos(O+AO).
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Fig. 2 Calculated dispersion of the anisotropic
microstrip line

Note that * j is introduced because of the

coupling between transverse and longitudinal

components as the result of nonzero &13,613,

IJIS, and PM [101.

TWO cases were computed: (1) 6=o, Af3=0

and (2) 0= 15°, A0=58°. The results are found to

be in a very good agreement with those obtained

using the spectrum domain technique [8] (see

Fig. 2).

In the second example, the GaAs-based

optical waveguide structure consisting of
AIGaAs/GaAs top/bottom cladding layers and an
embedded InGaAs/GaAs MQW core is
considered [9] (see Fig. 3). The operation of the

device depends on a field-induced increase in

refractive index within the MQW core as a

function the negative bias applied to the

electrode. The change of the refractive index in

the MQW is shown in Fig. 3. Because the media

are simple and anisotropic, the 2D FD-TD

computations involve only real-number

calculations.

Y
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Fig.3 Geometry of the MQW structure

The propagation constants were computed

and are shown in Table L They are in good

agreement with the results obtained with the

method of line (MoL) [9], In our computations,
a 30 x 31 nonuniform grid was used. The

aluminum electrode was not considered. The
difficulty in modelling the aluminum electrode

arises from the fact that the aluminum presents a
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negative real permittivity at optical frequencies.

This negative permittivity can cause instabilities
in the FD-TD scheme. Fortunately, most of the

energy is concentrated in the MQW layer and the

electrode has little effects on the propagation

constant as indicated in [9].

Table I

Computed normalized propagation constaut ~l& for

the MQW structure

Mode Bias (V) A4-OL this method Diff. ( %)

E;l –8 3.368974 3.393638 0.72

E:l –8 3.353880 3.387479 1.00

E!l I –4
I 1 1 1

~3.367963 I 3.381950 0.42
@ I –4

1 I I 1
I 3.353030 I 3385097 0.96 I

V. CONCLUSIONS

In this paper, a full-wave two-dimensional

TLM based technique is developed for the

analysis of arbitrarily shaped guided wave

structures. Unlike the previously developed 2D

TLM full-wave scheme, the method presented

here involves no operations on the third spatial

step Az. In addition, both electric and magnetic
fields are defined at numerical grid points.

In conclusions, the 2D TLM-based FD-TD

offers another efficient TLM based CAD tool for

the practical computer-aided design of various

RF, microwave and optical circuits.
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